数学とか語学とか楽しいよね

フランス語、ドイツ語、ロシア語、アラビア語、オランダ語、英語、スペイン語、ラテン語とか数学とか数値計算(有限要素法、有限体積法、差分法、格子ボルツマン法、数理最適化、C++コード付き)とか勉強したことをまとめます。右のカテゴリーから興味のある記事を探してください。最近はクラシックの名演も紹介しています。Amazonアソシエイトを使用しています。

【有限要素法】1次元定常移流拡散方程式をGalerkin法で解く C++コード付き

今回は1次元定常移流拡散方程式を有限要素法(Galerkin法)で解いていきます。C++コード付きです。1次元定常移流拡散方程式は、前に書いた記事「有限要素法のプログラミングを勉強するときにどの順序で学ぶのがよいか?」で紹介した、有限要素法を学ぶ場合に二番目に解くべき方程式です。ただし今回は風上化は入れていません。

1次元定常移流拡散方程式とは

 \displaystyle V\frac{du}{dx} -D\frac{d^2u}{dx^2}=0, \quad x \in [0, L]

のような二階の常微分方程式のことをいいます。ここで、 u は溶質の濃度、 V は風などによる移流速度、 D は拡散の効果を表す拡散係数と解釈することができます。ある溶質が移流や拡散のもとでどのような分布をとるか求めるのがこの問題です。

前回の一次元Poisson方程式に移流行列を加えるだけなので簡単です。今境界条件は前回と同じく3パターン用意しました。すなわち、

Case 1,  x=0 x=L でDirichlet条件を課す
 u(0) u(L) の値を指定)
Case 2,  x=0 でNeumann条件、 x=L でDirichlet条件を課す
 \frac{ \mathrm{d}u }{ \mathrm{d}x }(0) u(L) の値を指定)
Case 3,  x=0 でDirichlet条件、 x=L でNeumann条件を課す
 u(0) \frac{ \mathrm{d}u }{ \mathrm{d}x }(L) の値を指定)

です。それぞれコード上ではbc=1、bc=2、bc=3に対応しています。連立一次方程式の解法はGauss-Seidel法またはTDMAを用いています。好きなほうを選べます。詳しくは以下の記事を参考にして下さい。

コードです。

#include <iostream>
#include <cmath>
#include <fstream>
#include <iomanip>

using namespace std;

//Gauss-Seidel//
inline void GS(double D[],double L[],double R[],double x[],double b[], int &Node, double &eps)
{
	int i,k;
	double in,sum,max;
	for(k=0;k<100000;k++)
	{
		max=0.0;
		in=x[0];
		
		for(i=0;i<Node;i++)
		{
			in=x[i];
			x[i]=(b[i]-(L[i]*x[i-1]+R[i]*x[i+1]))/D[i];
			if(max<abs(in-x[i])) max=abs(in-x[i]);
		}
		
		if(eps>max) break;
	}
}

//TDMA//a:diagonal,c:left,b:right,
inline void tdma(double a[], double c[], double b[], double d[], double x[], int size)
{
	int i;
	double *P=new double[size];
	double *Q=new double[size];
	
	//first step//
	P[0]=-b[0]/a[0];
	Q[0]=d[0]/a[0];
	
	//second step//
	for(i=1;i<size;i++)
	{
		P[i]=-b[i]/(a[i]+c[i]*P[i-1]);
		Q[i]=(d[i]-c[i]*Q[i-1])/(a[i]+c[i]*P[i-1]);
	}
	
	//third step, backward//
	x[size-1]=Q[size-1];

	for(i=size-2;i>-1;i=i-1)
	{
		x[i]=P[i]*x[i+1]+Q[i];
	}
	
	delete [] P,Q;
}

inline void mat(double D[],double L[],double R[],double b[],double f[], int &Ele, double &dx, double &V, double &Diff)
{
	int i;
	for(i=0;i<Ele;i++)
	{
		//Diffusion//
		D[i]+=Diff/dx;R[i]+=-Diff/dx;
		L[i+1]+=-Diff/dx;D[i+1]+=Diff/dx;
		
		//Advection//
		D[i]+=-V/2.0;R[i]+=V/2.0;
		L[i+1]+=-V/2.0;D[i+1]+=V/2.0;
		
		//Source//
		b[i]+=(2.0*f[i]+1.0*f[i+1])*dx/6.0;
		b[i+1]+=(1.0*f[i]+2.0*f[i+1])*dx/6.0;
	}
}

inline void boundary(int &bc,double &D0,double &D1,double &N0,double &N1,double D[],double L[],double R[],double b[],int &Node,double &Diff)
{
	if(bc==1)
	{
		D[0]=1.0;R[0]=0.0;b[0]=D0;
		L[Node-1]=0.0;D[Node-1]=1.0;b[Node-1]=D1;
	}
	if(bc==2)
	{
		L[Node-1]=0.0;D[Node-1]=1.0;b[Node-1]=D1;
		b[0]+=-N0*Diff;
	}
	if(bc==3)
	{
		D[0]=1.0;R[0]=0.0;b[0]=D0;
		b[Node-1]+=N1*Diff;
	}
}

int main()
{
	int i;
	int Ele=100;
	int Node=Ele+1;
	double LL=1.0;
	double dx=LL/Ele;
	double eps=pow(2.0,-50);
	int bc=1;//bc=1 both Diriclet bc=2 left Neumann bc=3 right Neumann
	double D0=0.0;
	double D1=1.0; 
	double N0=0.0;
	double N1=2.0;
	double Diff=0.01;
	double V=0.1;
	double *b = new double[Node];
	double *x = new double[Node];
	double *f = new double[Node];
	double *D = new double[Node];
	double *L = new double[Node];
	double *R = new double[Node];

	for(i=0;i<Node;i++) 
	{
		b[i]=0.0;x[i]=0.0;f[i]=0.0;D[i]=0.0;L[i]=0.0;R[i]=0.0;
	}
	
	ofstream fk;
	fk.open("answer.txt");
	
	mat(D,L,R,b,f,Ele,dx,V,Diff);
	boundary(bc,D0,D1,N0,N1,D,L,R,b,Node,Diff);
	
	//Gauss-Seidel or TDMA//
	GS(D,L,R,x,b,Node,eps);
	//tdma(D,L,R,b,x,Node);
	
	for(i=0;i<Node;i++) cout<<x[i]<<endl;
	for(i=0;i<Node;i++) fk<<dx*i<<" "<<x[i]<<endl;

	delete[] b,x,f,D,L,R;

	return 0;
}

計算結果を見てみましょう。

f:id:mutsumunemitsutan:20181021221050p:plain:w500

境界条件が正しく反映されていることを確認して下さい。移流の影響で全体的に右に寄っていることがわかります。

こちらの離散化も詳しく書く予定です。Galerkin法では移流が卓越する場合をきちんと扱えないので、移流方向を考慮した離散化「Petrov-Galerkin法」を使う必要があります。それも後程。書きたいこと、書かねばならぬことが山のようにあります。ひとつずつ着実に消化していきたいです。